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ABSTRACT

In the present parer we extend in two wavs so-e results- resentt iF,

Kotz and Johnson (Comm. in Statistics (1982), All ) relating to the study

of distributional aspects of effects of errors in ins .ection samplinu;

(1) Multistace samplinc with k successive sar'ples involving the po_ sibil-

ity of two types of errors in inspection (classifying a detective individual

as non-defective, or a non-defective as defective); (2 Sinale-stace sarplinn

considering several types of defects of which only one is tested on inspection.

Both (1) and (2) lead to novel multivariate distributions. Their structural

properties are analysed in some detail and some applications, in particular

those in ouality control are discussed.
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I. INTRODUCTION

We have recently studied effects of inaccuracies in inspection on the [,roper-

ties of acceptance sarpling procedures (Johnson & Kotz (19P1), Kotz &

Johnson (1982a,b)). In particular we have considered two-stage sa;nplin,,

wherein up to two succe:sive samples of sizes n1 ,n2 may be taken fror a lot

of size N, containinn D defective items. (The second sample is taken only

if the number (Z of items found to be defective is within certain limits

defined by the sampling schemes.) It was supposed that inspection is not

perfect, so that some defective items may not be noticed as such, whil. soie

nondefective items may be classified as 'defective'.

Similar investigations have been described in quality control literature by

Hoag et al. (1975) Dorris and Foote (1978) and Rahali and Foote (1982) (see

also Armstrong (1932)). In tile present paper we shall extend this work

along two directions, each of which introduces apparently novel multivariate

distributions.

First we shall generalize our result to multistage sarpling with k successive

samples of sizes nl, n2 ..... nk and suppose that for the i-th sample

pi = probability that a defective item is correctly classified

p= probability that a nondefective item is classified as 'defective'.

Secondly, returning to single-stage sampling we shall consider the case of

two types of defects one of which is relatively easy to detect, and investi-

gate the distribution of the second kind of defect when selection is on
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the basis of the first kind. As before we will suppose that p1 denotes the

probability of correct classification of a defective item and pi the probabil-

ity of classification of a non-defective item as 'defective'.

2. MULTISTAGE SAMPLING ANALYSIS

We will be interested in the joint distribution of Zl z2 9 ... 9Zk9 the numbers

of items classified as defective as a result of inspection of the sequence ol

k samples. This distribution seems to be new, and presents some features of

theoretical interest, as well as having the possible practical applications

we have indicated. Chief among the latter is the possible calculation of

acceptance probabilities for multi-stage (or even sequential) sarpling

schemes under imperfect inspection. Some nractical comments, in the two-staoe

case are given in Kotz & Johnson (1982b).

Let Y1 ,Y2 ,.. ,Yk denote the actual numbers of defectives in the 1st, 2nd,....k-th

samples respectively. The joint distribution of Y = (Yl .... VYk is a rnulti-

variate hypergeometric with

k N- k n. N-Y:niPr[ E (Y.- )] = (N){P(~. JYI(
i l i-yi D) (yi) U ":.

ia- b- 4i

(O0-Yi<ni(i~l,.. ,k)" D-NI + k= ni . = i YO .

Symbolically, we write

X ̂  Mul t.Hypgk (n;D,N).

We note that

k (ri) (si) (ri) ('s ) k (ri4si) (.(ri+si))
E[ 11 1Y (ni'Yi) 1 ]= D (N-D) 1 1 n. 1 /N (2)

i=l i=l1 1

where a(b) = a(a-l)...(a-b+l) is the b-th descending factorial of a.

Conditionally on Y, the Z's are mutually independent, with Z. distributed as1
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the sum of two independent binomial variables with parameters (Yi,Di) and

(ni-Y i ,p !) respectively.

k k. z. hn z.-h y.-h n.-yi-z+hz- Yi ni-Yi~p h Iii h]

Pr[ r (Zi i)',Y=y] =  -Lh=O~h  )(z h ) Pi i -Pi) ( _

i~l ~ i=

k
i b(zi;yiP ;n .y p') (3)

where b(zi;yip,; n,-y,,p!) is the probabilitv function for the convolution

of the two binomial distributions with parameters (yi'Pi) and ni-Y i'pi)

respectively.

The unconditional distribution of Z is

N -lVk (N- ni) k (ni,, k
Pr[Z =.. - ()1 ' 1 -,, b(zi;yi,pi;ni-yi,p') (4)

D -I - D.yi  i=l .

The limits for yy are as in (M).

Symbolically

Bin(Yl 'Pl)*Bin(nl- Yl I ) Y

Z I • I Mult.Hypg k (n :D,.; (4)

Bin(Yk "k)*Bin(nkYk'Pk)

where * stands for convolution and .' is the compounding operator (as defined,

for example, in Johnson & Kotz (1969, p. 184)).

This distribution might be called "Multivariate Hyperqeometric-Convoluted

Bi nomi a l (s)".

The conditional (on Y) ri-th factorial moment of Z. is

E[z ri)  ri ri -h (h) (r-h)
1 Lh=Oh i i (ni-Yi)
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The unconditional r (r i .... ,rk)-th factorial moment of Z is

k (r i ) k (ri) k (r.)
Ur( )=E[ P Zi  ] EyE[ Zi 1 Ey[ E[Z. 1Y]]r i =I ~ Y i

k r. ri h ri-hy(h) (n (r-h)
LE[ '-h:O h )PiPi i (6i=1

r rk k r.2 , r.-, (.) (r.- ,Ik Ti, 1 , i Y i (n ) i
-~. 1P p p' [ En

' ,l:" " k ii =1p1 -

k (ri)
n

i r rk k r. r..-
I1 1

r.-, .1) 1

S "k i=l

N

where g. is the coefficient of x' in (r!4n.x) 1 (Note tha'

(i) if sampli no were with replaceient, (6) would be

(r) r. r
.i Dp -t (N-[P)p 1

(ii) if pi = p and p' p' for all i-corresporidinq to constant quality of

inspection throuhout -then

r.

9 ( bp'p 1

In particular

E[Zi] = ni[0N1 P. +(l-DN I)p i' n ip.

where 59- isDNp I+(l-DN1 )p' is the probability that an individual chosen at

" i I

random in the i-th sample will be classified as defective (whether it relly

is so, or not). Also



-5-
--- ---- 1 - 2

var(Z i) n n -pi) ni(ni-l)(N-l)- DN- (l-DN-( (7.2)

and

cov(Z i ,Z1 ) = -nin j (N-1) - IDN I ( I -DN- I )(p i - P)(p j -p') (8)

If pi > p! and pj > p' as one would hope, if inspection is to be of any use

at all, the covariance is negative, as might be expected, since the covariance

of Y. and Y. 4s negative. If p, . p' or pj u, so that it is irrelevant

whether an iterl in the corresponding sa:'ple(s) is defective or not, then the

covariance is zero - in fact the corresDondinn Z (or Z's) is independent of all

other Z's.

It is easy to write down the conditionol distribution of Zi, giver, Zi, but it

is rather complicated in fori . We Lan, however, derive the regression function

in the following way.

We have E[ZiYi] V i pi , (ni-Yi)pl

so E[Z i Zj] = piE[Y i Z.] p(ni-E[) i Zj) (9)

Now E[Yi Y.] ni(D-Y.)/(N-n.)
JI

so E[Yi zjZ] : ni(N-nj)- (D-E[YjZj(]) 0)

In order to evaluate E[YJ IZ.] note that, for the j-th sample,

Pr[item is defective item classified as defective] = DN-1 pj/ .

and

Pr[item is defective item classified as nondefective] = DN1 (l-pj)/(l-p)

so E[Y iZ.] DNO[Z.j(pj/ j) + (nj-Zj)!(1-pj)/(l-pj)] (11)

From (9), (10) and (11) we obtain
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E[Zi1Z.] nip' + (pi-p') E[YiJZ]

nip' + ni(pi-p')(N-n )-(D-E[Y. Z])

1 0 1D r 1 3

: nip1 + ni(P.-p!)D- .. - .j . (7- n)(): .12)
i I I 1(N-n ) 5 j(1-pZ)n

The regression is linear, and the sign of the reqiression coefficient is

opposite to that of (pi-pa)(pj-pn) aareeinq with the sign of cov(ZiZ.) in (

3. MULTISTAGE SAMPLING: A SPECIAL CASE

If we take nI = n2 =nk = 1 we have the first k stages of a fully sequent-

ial sampling procedure. In this situation the only possible values of each of

the Y's and Z's are 0 and 1. Formula (3) becomes
("- T . Nk k z. l-z. z. 1l-z.

N- l " N-k k Z ) .. "ri 1Z I(1,) i; Y i 0l-1i +( -Yi)p, l(l-P,(1

1 y * k D *v i _ Ili

Collecting together terms with the same value of v= y (corresrondinc to the

total number of defective ite's selected) we net

k k v- , -k .- P i , O(l Pi) '(1 ,-p 3

r- D y)  ".., i=l I i

where summation with respect to - ( ' k ) and is= l....k s

constrained by

k- y, and izkl +r"i) k= z z

(corresponding to the total number of items classified as defectives) and for

each i, one of , is 1, the other three are each zero.

Yet another way of writing (13) is



-7-

Pr[z=z] = ()- N-k).[coefficient of Y zu V in

k
,PjXU+P!x+(I-Pj)u+i-p j ] 12)

j=l

It may be noted that this shows that i k Z. is a sufficient statistic

(for D, supposing N, p's and p"s are known). If p. p and pi p for

all i, we have the coefficient of xZu in px, + Px'+(I-p)u+(l-p') kor e

right hand side of (13)"

4. ASSOCIATED DEFECTS: ANALYSIS

We now suppose that there are two types of defects - ,l and (2) - and that in

a population of size N there are Dqh individuals with g type (1), and h type

(2) defects (q,h = 0,1). (Of course D on+D 0 1+D10+D = N.) For example (1)

might represent surface irrecularity, with (2) crrespondinq to internal flaw's

in material, such as metal bars or plates. In many situations the different

types of defect correspond to different modes of failure.

A random sample of size n is taken (without replacement) from the population.

and each of the chosen individuals is examined for presence of type (1)

defect. We are interested in the number (Z1 ) of individuals classified as

possessing defect (1); and amonq these ZI individuals, the number (Z*)

actually possessing defect (1) and the number (Z*) possessing defect (2).

The distribution of Z1 is given in Section 2, and also in Kotz & Johnson (1982b).

The distribution of Z* is the hypergeometric-binoiial

Binomial (Y,pI) A Hypq. (n;0 10+011 ;N) (14)
Y

The probability that the sample will contain ygch individuals with g type (1)

defects and h type (2) defects is
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1 1 1 1 (D h
Pr[ (Y hYg ) =V Q ) 1.}/( n) (5

g=O h=0 g=O h:0 Ygh n (Y0*Y01+Y1 o+Y n)

(A multivariate hyperoeonetric (nD,N) distribution -cf (4a) where n is a

vector but D is not.) For the = 00"Ol01. '10, 1 1 )-th joint factorial moment

of Y we have the e,,presssion
( 1 1 ( h

) = n ( [ - D h/ where + +1 +

q=O h=O qh 00 01 10li l

Given y = (yooyOl,ylO,yl 1), Z1 is distribute. as the suf, of two independent

binomial variables, with parameters ,ylo YllP1) and (Yo+yolPi) respectively.

The first of these variables is, in fact Z*. Similarly, Z* is distributed as

the sum of two independent binomial variables with parameters (y 1 l,pl) and

(ym'Pl) respectively. Introducing four independent binomial variables Wqh

with parameters (Yqh' r'gl + (l-"q )P) for a, h=0,l with y: l(--)q , then

conditionally on Y =

7 1 - Wo0+W0I+W10 tW11  (17.1)

Z = WI+WI (17.2)

Z* = W +W (17.3)
2 01 11

We have

E(Zl1Y] = (Wlo+YllI)P+(Yoo+YoI)Pl;var(ZII' .)-'(Ylo+,YlI]Pl(I-Pl)+(YoI+Yoo)PI(I-P,)

(T8.1)

E[Z*;y] : 1P+YolPl ;var(Z*Iy)=YllP 1 ( l, - p l ) +y O p ,' ( l - p ,')  (

cov(Z1 ,Z Iy) var(Wlo+W11Iy) = var(Z 'y) (18.3)

corr(Z,,Z~Iy) {var(Z~ly)/var(Z y ) J (18.4)

cov(Z*,ZJYl) = var(W 11,JY) = Y1 1 p1 (l-p 1 ) (18.5)
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r 2 -

corr(Z ,Z y) = -(- -_I

L -

The distribution of Z* is the multivariate hyperqeometric-convoluted binomial

2ABinomial(Yl,,P,)*3inowial(Ylo,'Pi)Y /\ Mult. Hypg(n;DillDlo;N) (19)

ill 10l

Moments can be obtained similarly as in Section 2.

For an individual chosen at random from the population

Pr[classified as having defect (1)] = N " :(Do+Doo)Pi+(Dlo+Dll)Pl

= W- (D0 nl+Dl pl) = p1. say (19.1

(DI =D1 0+011 
= total number of individuals in the population with defect (1);

0 :N-D1 )

and N-l D1,+IID
Pr[having defect (2) classified as having defect (1)] = - 0_________P_1

S- , say (19.2)

P1

Hence E[ZZI] : Z1 P2 Pl (20.1)

and (from (7.1))

E[Z ] = np21 !  (20.2)

Formula (20.1) is also valid conditionally on Y=y, so we have

Cov(Z *) p2 1 - n26- (21.1)P2 15 1 211

and from (7.2) and (7.1)
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cov(Zi,Z") 1_i(i_ ) _-_ _ fI N 1 (21 2)2 N-1 N 0I {lO

p1

We must have cov(Zi,Z*) > 0 because fromn (20.1), E[Z* Z,] is an ircreasin:

function of ZI ,

Extension to situations in which there are m ( 1) types of defects - (2),

(3), ... , (m+l) - in addition to the type (1) which, is inspected direct.,

straightforward. The only essentially new proLle-is are the joint distribjti

of Z-A. ... Z*  - the numbers of individuals . .it type (2),... ,l") defe,t

among those classified as havina defect (1); and also the dist-ibutions o"

variables like Z* the nui.iber ai:oriq these individuals, wit, both (i) & {'(i j).....

type defects (i j -, 2). Using an obvious notation (with subscripts C("'

indicating absence (presence) of the correspondino type of defect) we have,

for example, corresponding to (19.2)

Pr[having defects (2) and (3), but not (4),...1(m41) classified as having

defect (1)] = D '0 110 . O I + -i I0.'.''rl (22)
0.. p + 'I P1

where D ' ... a (j 9 1j) (D is the quartity'Dg... =0 q a2 "am
a2=0 aM+ l =0 a2  i.

previously represented by P .)

Considering, for simplicity, the case m = 2, we now obtain an expression for

cov(Z * ,Z3). We have, analo.ously tu (17.3)

Z: W + W l+ WII0 + 1101 (23)

, W01  + W + W1 + WOiZ3 1 WOil 10 00l

where the W's are independent binomial variables and the parameters of Whi

are (Yghi' 6gPi + (l-"g)Pi)"

Symbolically
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fBin(Y 110 P) )*Bin(YVo0 ,P )" (24)

2e. Bin.(1 1)BinY0

3, 'Bin(Y 101 'Pl )*Bin(Y 001 'Pi ) ' Y

(Here Y = (11 Y o 110' Y010, 1101 Y 0010 )

(S2)z (s

A general expression for the joint factorial 'orert E[Z( Z*s3), car be

obtained in the following way.

Z* s )Z (s ) (4 (s2 )W(il) (ig) ( ) ( W 4) .(4 3)W (jl) 14(j2) W(j3) W,(j4

z i Ill 1 l 110 010  j 1111 0 11  1o 001

J ( Ji (j 1 -q) (il+n) J2 J2 (-h) (i -h)-(4)7(4)( s2  3)1- W 1 2 )i k02 -

)  III h 2 011

(i3) (1 4) (J 3 ) J4)(
+W1 10 U0 10  101 001  (25)

wh r (4) 7.(4)_ --
where ;and utilizing the

i _-s ;3 :11 ?j-~J 1J4.

a1)= (  11) 2 1 ' ( 2) (0 2- u) (,I +u )

identity a a a (a- Ul (u - 2 a

a s ) (a-si+* ~ 2 ( 2 u 1 u

An expression for E[Z2 3)y is obtained by replacing W
( i in (25)2g hi

by Y(-hipg where p * : (=-'* )n Then taking expectations with
Ygnj g whr aq- ~

respect to Y, we obtain

) ( 3 "il J2 s2 3 Jl J2)gSl13 , 2 + j h+i2 J4 (26)[z(2 )] O i.4 () hO i .)q )(h )PI +
Sj g=- -" P

(l-g) 0J2-h) (s2+s3+g+h) (i1+g) (i2+h) (i3 ) i4 ) (j3) (j4)
X i1 i2 • (s 2 +s 3 +o+h - Dill DOil D O 110 D DIO0 D00 1

If m > 2, Dghi is replaced by Dqhi.. ; joint factorial moments of three or

more Z*'s (i > 1) can be obtained by similar techniques, though the formulas

rapidly become more cumbersome.
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For lower order moments, direct calculation is often simpler than using general

formu I as.

We now outline the calculation of cov(Z*,Z*). We have from (23) and (24)

cov(7-.Z 3  x)
=  Yl lPl (l- Pl)+Y OilPl (l-pj) (27')

whence

E[Z*Z* y]= YlllPl( l-rp l )+y O llpj
(I- p')4, y I ~ l O p + X I ~ O O D

t '~Ylll'Y1 oi )rl (Yol 'YOOl )Pi "

so (using (15))
I C Z 3Z )E[Z2Z 3JE ]  7*,

nD l  ( ))+D ( + in n(n-I ) ( p2 2+D
4 N - N-(N-- 111 l llpi

+ n-l)0 nl n-

+, n (-1) - n2 -(Dll +Dll )Pl+(D311 Dolor,). (Dlll+Dlol)Pl+(Doll DOOl)Pi

(1_n n-I 1 n-I 1 j
N'DIII~~l~1-  ,jP)+,oilPj (l -_ -] Pl 2J

- n(N-n) :(D I +DI )PI+(DoII+DoIo)jj (Dlll+Dlol)Pl+(Doll+Dool);-'

N 2(N-I) 11 110

This covariance can be positive or negative. Bo~h Z* and Z* are positively

correlated with Z1 (the total number of individuals, classified as 'defective'

of which Z* and Z* are subsets), but they may be negatively correlated ii, the

population. The latter situation corresponds to values of 0 lO and boOl which

are large relative to Dal. (g = 0,1).

When N is large compared with n,

cov(Z*,Z*) " n[13,11,-( ),11 +  P1 lo)(Pl l" 11 01 )  (29)

where Plhi =- I(Dlhipl+DohiP).

j
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Taking as an example p1 = 0.90, pi 0.10

D1II/N = 0.01; D110/N = 0.1 ; D10 1/N = 0.15

D0/N =0.04; D 01N = 0.15; D0 /N = 0.2

we have

P1l1 0.010; p1 10  = 0.105; l 0.155

so Pl I-(Pl 1I
1 Pl iO)(Pi i i +P Ol 0

corresponding to negative cov(Z*,Z*)

On the other hand, if Dill/N and DOil/N are each increased to 0.05, the ctier

parameters remaining the same, we have Pl 11 = 0.050, while p1,10 and pl 01

remain unchanged, so

Pl ll- (Pl I1+  Pl 'lO)(1lil + Pl 0l)  =  n.o5o - (0.155 0.205) 0

corresponding to positive cov(Z2,Z ).

The same formulas apply when there are m( 2) types of defect other than (1),

replacing 0ghi by P,hi...

At the cost of some elatration in the formulas, we can allow for the possibi-

lity that presence or absence of a defect of type (2) may affect the probabil-

ity of correct classification in regard to defects of type (1). Introducing

the notation

2pI (2p,) for probabilities of detection of (1) in the presence (absence)

of (2)

and

Yp (Qpl) for probabilities of incorrect assiqnment of (1) when no (1)

is present, in the presence (absence) of (2) we would still have a model

of form (17) but the parameters of the binomial distributions of the

'gh S would now be . + (1 _q )pj) for h - 0; n= 1,2
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(Ygl, ,g'2Pl + (l-'q) i )  for h : ; q : 1,2

The probability of having defect (2), if classified as having (1) would be

+ D11 P,'I
O 1 L ll2P 2Pl 2'1

Doo P + D' *Pl + D'II 2 P1

where 5 1('0 0* p +• 01' 2p + D10 2p + D11 2[
1  Pr[classified as havin,,

defect (1)]

P2; = 4 • ,0* + DI )2pand P i N-o 2nl 1"2Pl

Formulas (20.1) and (20.2) would still be valid, with P11 p2 1 replaced by or,

P 2I respectively.

Extension to situations with m('l) types of defect, other than the one (type

(1)) which is inspected directly is, again, straightforward.

In view of the model (17) which applies, with appropriate adjustments, to all

the cases mentioned above, the joint distribution of Z's and Z*'s is

asymptotically multinomial as the population size N increases indefinitely,

with the ratios n:D's:N remaining constant, or tending to fixed values.

5. SOME APPLICATIONS

Although this paper is concerned primarily with some novel compound multivariate

discrete distribution which can arise in connection witi, faulty inspection

rather than in specific applications , we shall indicate in this section a few

circumstances in which knowledqe of these distributions may be useful and

directly applicable to specific investigatonc and inquiries.

The results in Section 2 are relevant to studies of robustness of multistage

sample procedures to errors incurred in inspection and consequently to the
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actual construction of such proced ,'es. They would also be directly relevant

to construction of tests for inequalities among the pi's and/or p' 's which

could be one ;spect of attempting to detect the existence of faulty items.

(Evidently if pi and/or p' vary with i, they cannot be identically equal to 1

or 0 respectively for all i). The distributions derived in this paper are

also indirectly relevant to constrtction of tests of hypothesis of no faults

(p = 1, p' = 0) assuming pi, p' do not depend on i. Some attempts in this

direction have been made in Johnson & Kotz (1982) while analyses of ways in

which cost consideration can be allowed for in faulty inspection problers are

sketched in Kotz & Johnson (1982b).

The results in Section 4 are relevant to assessent of performance of proce-

dures for identifying individuals with defects of type (2),say (especially

in those cases when these defects bre not easily detectable) by

observing the existence or non-existence of defects of type (1), and the

robustness of this assessment to actual nuiibers of faults among inspectec iters.

In these circumstances it may sometimes be aprnropriate to carry out a 10C.

inspection - that is, n = N - thouqh the more general formulas we have

derived are of course of greater flexibility and are useful in various situa-

tions when total inspection is either not feasible or too costly. Indeed,

studies in this direction will involve introduction of cost functions allov,-

inq for costs of samplinq and losses due to erroneous retention of defective

individuals of type (2) and the erroneous rejection of non-defective type (2)

items. See Kotz & Johnson (1982b) for an appropriate model and some

preliminary results for the case of two-stage sampling with defects of a

single type. Finally questions of choice of which type(s) of defects to

inspect for can also arise in this context.
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